On Decomposition of Bitopological (1,2)*-A- Continuity

¹O. Ravi, ²K. Mahaboob Hassain Sherieff and ³M. Krishnamoorthy

- ^{1.} Department of Mathematics, P.M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, India. Email: siingam@yahoo.com
- ^{2.} Department of Mathematics, S.L.S.M.A.V.M.M.A.V College, Kallampatti, Madurai Dt., Tamil Nadu, India. E-mail: <u>rosesheri14@yahoo.com</u>
- ^{3.} Department of Mathematics, R V S Engineering College, Dindigul, Tamil Nadu, India.

Abstract: - The aim of this paper is to give decompositions of continuity, namely $(1,2)^*$ -A-continuity by providing the concepts of $(1,2)^*$ -semi-continuity, $(1,2)^*$ -C-continuity, $(1,2)^*$ - β -continuity and $(1,2)^*$ -LC-continuity.

2000 Mathematics Subject Classification. 54E55.

Keywords and Phrases : $(1,2)^*$ -A-set, $(1,2)^*$ -C-set, $(1,2)^*$ -A-continuity, $(1,2)^*$ -C-continuity,

 $(1,2)^*$ - β -open set, $(1,2)^*$ -semi-open set

1. Introduction

To give a decomposition of continuity, Tong[13] introduced the notions of A-set and Acontinuous mappings and proved that a map $f: X \rightarrow Y$ is continuous if and only if it is both α continuous and A-continuous. Again, Tong[14] introduced the notions of B-sets and B-continuous mappings, and together with the notion of precontinuity he proved another decomposition of continuity i.e., A mapping $f: X \rightarrow Y$ is continuous. Ganster and Reilly[5] established a decomposition of A-continuity i.e., a mapping $f: X \rightarrow Y$ is Acontinuous if and only if it is semi-continuous and LC-continuous.

In this paper, we obtain decompositions of bitopological $(1,2)^*$ -A-continuous. In most of the occasions, our ideas are illustrated and substantiated by suitable examples.

2. Preliminaries

Throughout this paper, X and Y denote bitopological spaces (X, τ_1 , τ_2) and (Y, σ_1 , σ_2), respectively, on which no separation axioms are assumed.

Definition 2.1

Let S be a subset of X. Then S is called $\tau_{1,2}$

-open [10] if $S = A \cup B$, where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ - closed.

Definition 2.2

Let A be a subset of X.

(i) The $\tau_{1,2}$ -closure of A [10], denoted by $\tau_{1,2}$ - cl(A), is defined by

$$\cap$$
 {U : A \subseteq U and U is $\tau_{1,2}$ - closed};

(ii) The $\tau_{1,2}$ -interior of A [10], denoted by $\tau_{1,2}$ -int(A), is defined by

$$\cup$$
 {U : U \subseteq A and U is $\tau_{1,2}$ -open}.

Remark 2.3 [10]

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) Volume 1, Issue 4, December 2010

Now we recall some definitions and results, which are used in this paper.

Definition 2.4

A subset A of X is said to be

(i) (1,2)*-semi-open [10] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)),

(ii) (1,2)*- preopen [10] if $A \subseteq \tau_{1,2}$ -int($\tau_{1,2}$ - cl(A)),

(iii) (1,2)*- β -open [12] if $A \subseteq \tau_{1,2}\text{-}cl(\tau_{1,2}\text{-}int(\tau_{1,2}\text{-}cl(A))),$

(iv) (1,2)*- α -open [10] if A $\subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A))),

(v) regular (1,2)*-open [10] if $A = \tau_{1,2}$ -int($\tau_{1,2}$ - cl(A)).

The complements of the above- mentioned open sets are called their respective closed sets.

The family of all $(1,2)^*$ -semi-open (resp. $(1,2)^*$ -preopen, $(1,2)^*$ - α -open, $(1,2)^*$ - β -open, regular $(1,2)^*$ -open) sets of X will be denoted by $(1,2)^*$ -SO(X) (resp. $(1,2)^*$ -PO(X), $(1,2)^*$ - α O(X), $(1,2)^*$ - β O(X), $(1,2)^*$ -RO(X)).

The $(1,2)^*$ -preclosure, $(1,2)^*$ -pcl(A), of a subset A is the intersection of all $(1,2)^*$ -preclosed subsets of X that contain A.

Example 2.5

 $\label{eq:constraint} \begin{array}{l} \mbox{Let } X = \{a, b, c\}, \ensuremath{\tau_1} = \{\phi, X, \{a\}\} \mbox{ and } \ensuremath{\tau_2} = \{\phi, X, \{c\}\}. \mbox{ Then the sets in } \{\phi, X, \{a\}, \{c\}, \ensuremath{\{a, c\}}\} \mbox{ are } \ensuremath{\tau_{1,2}}\mbox{-open and the sets in } \{\phi, X, \{b\}, \{a, b\}, \ensuremath{\{b, c\}}\} \mbox{ are } \ensuremath{\tau_{1,2}}\mbox{- closed.} \end{array}$

Definition 2.6

A subset S of X is said to be

(i) a $(1,2)^*$ -A- set [10] if $S = G \cap R$, where G is $\tau_{1,2}$ -open and R is regular $(1,2)^*$ -closed,

(ii) a $(1,2)^*$ -t-set [10] if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(S)) = \tau_{1,2}$ -int(S),

(iii) a (1,2)*-B-set [10] if $S = G \cap R$, where G is $\tau_{1,2}$ -open and R is a

(1,2)*-t- set,

(iv) a locally (1,2)*-closed [9] if $S = G \cap R$, where G is $\tau_{1,2}$ -open and R is $\tau_{1,2}$ -closed.

The family of all $(1,2)^*$ -A-sets (resp. locally $(1,2)^*$ -closed sets, $(1,2)^*$ -B-sets) of X will be denoted by $(1,2)^*$ -A(X) (resp. $(1,2)^*$ -LC(X), $(1,2)^*$ -B(X)).

The following Proposition is a direct consequence of the definition of $(1,2)^*$ -t-sets.

Proposition 2.7

A subset A of a space X is a $(1,2)^*$ -t-set if and only if it is $(1,2)^*$ -semi-closed.

Proof

Let A be a (1,2)*-semi-closed set. Then $\tau_{1,2}$ int($\tau_{1,2}$ -cl(A)) \subseteq A.Therefore $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)) \subseteq $\tau_{1,2}$ -int(A). We know that $\tau_{1,2}$ -int(A) \subseteq $\tau_{1,2}$ -int($\tau_{1,2}$ cl(A)). Hence $\tau_{1,2}$ -int(A) = $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)). Then A is (1,2)*-t-set.

Conversely, let A be a $(1,2)^*$ -t-set. Then $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = $\tau_{1,2}$ -int(A). We have $\tau_{1,2}$ -int $(\tau_{1,2}$ cl(A)) $\subseteq \tau_{1,2}$ -int(A) \subseteq A. Hence $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) \subseteq A. Therefore A is $(1,2)^*$ -semi-closed set.

From the definitions, we can see $(1,2)^*$ -LC(X) $\subseteq (1,2)^*$ -B(X).

Example 2.8

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. We have $(1,2)^*$ -LC(X) = { $\phi, X, \{a\}, \{b, c\}\}$ and $(1,2)^*$ -B(X) = { $\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. Clearly {b} is $(1,2)^*$ -B-set but it is not locally $(1,2)^*$ -closed.

Remark 2.9 [10]

- (i) A (1,2)*-A-set is a (1,2)*-B-set but not conversely.
- Every regular (1,2)*-open set is τ_{1,2} open but not conversely.

Proposition 2.10

Let A be an $\tau_{1,2}$ -open subset of a space X. Then $\tau_{1,2}$ -cl(A) is regular (1,2)*-closed.

Proof

Clearly, $\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))) $\subseteq \tau_{1,2}$ -

cl(A). So we need only to show that $\tau_{1,2}$ -cl(A) $\subseteq \tau_{1,2}$ cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))). Now, from A $\subseteq \tau_{1,2}$ -cl(A), we have A $\subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)). Therefore, $\tau_{1,2}$ -cl(A) \subseteq $\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))).

Proposition 2.11 [11]

Let A be a subset of a space X. Then (1,2)*- $pcl(A) = A \cup \tau_{1,2}\text{-}cl(\tau_{1,2}\text{-}int(A)).$

Remark 2.12 [9]

A subset S of X is locally $(1,2)^*$ -closed if and only if S = U $\cap \tau_{1,2}$ -cl(S), where U is $\tau_{1,2}$ -open.

Definition 2.13 [10, 12]

Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map. Then f is said to be $(1,2)^*$ -semi-continuous if $f^1(G) \in (1,2)^*$ -SO(X) for each $\sigma_{1,2}$ -open set G of Y.

The $(1,2)^*$ - β -continuity and $(1,2)^*$ -Acontinuity are analogously defined. **Remark 2.14** [10](1,2)*-A-sets and (1,2)*-semi-open sets are independent.

Let X = {a, b, c}, τ_1 = { ϕ , X, {a}, {b, c}} and τ_2 = { ϕ , X, {b}, {a, c}}. Then the sets in { ϕ , X, {a}, {b}, {a, b}, {b, c}} are $\tau_{1,2}$ -open and the sets in { ϕ , X, {a}, {b}, {c}, {a, c}, {b, c}} are $\tau_{1,2}$ -closed. We have $\{c\}$ is $(1,2)^*$ -A-set but not $(1,2)^*$ -semiopen.

Let X = {a, b, c}, τ_1 = { ϕ , X, {a}} and τ_2 = { ϕ , X}. Then the sets in { ϕ , X, {a}} are $\tau_{1,2}$ -open and the sets in { ϕ , X, {b, c}} are $\tau_{1,2}$ -closed. We have {a, b} is not (1,2)*-A-set but it is (1,2)*-semi-open.

3. PROPERTIES OF BITOPOLOGICAL (1,2)*-SETS

In this section, we provide three theorems concerning decompositions of bitopological $(1,2)^*$ -A-continuity. In the second theorem, a notion of $(1,2)^*$ -C-sets which is weaker than that of locally $(1,2)^*$ - closed sets is used.

Definition 3.1

A subset S of a space X is called (1,2)*-C-set if S = G \cap R, where G is $\tau_{1,2}$ -open and R is a (1,2)*preclosed.

Remark 3.2

- (i) The family of all (1,2)*-C-sets of X will be denoted by (1,2)*-C(X).
- (ii) Every $\tau_{1,2}$ -open set is $(1,2)^*$ -C-set.
- (iii) Every $(1,2)^*$ -preclosed set is $(1,2)^*$ -C-set.

Remark 3.3

By definition 3.1, it is clear that $(1,2)^*$ -A(X) $\subseteq (1,2)^*$ -LC(X) $\subseteq (1,2)^*$ -C(X).

The following example shows that a $(1,2)^*$ -C-set need not be a locally $(1,2)^*$ - closed set and a locally $(1,2)^*$ -closed set need not be a $(1,2)^*$ -A-set.

Example 3.4

Let X = {a, b, c}, τ_1 = { ϕ , X, {a, b}} and τ_2 = { ϕ , X, {b, c}}. Then (1,2)*-A(X) = { ϕ , X, {a, b}, $\{b, c\}$; (1,2)*-LC(X) = $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{b, c\}\}$ and (1,2)*-C(X) = P(X), where P(X) is the power set of X. Clearly, $\{b\}$ is (1,2)*-C-set but it is not locally (1,2)*-closed. Moreover, $\{a\}$ is locally (1,2)*-closed but it is not (1,2)*-A-set.

Definition 3.5

A bitopological space (X, τ_1 , τ_2) equipped with the family of all $\tau_{1,2}$ -open sets will be called DRT-space if $\operatorname{int}_{\tau_1}(S) = \operatorname{int}_{\tau_2}(S)$ for each $\tau_{1,2}$ closed subset S of X.

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, c\}\}$. Then (X, τ_1, τ_2) is not DRT-space since $int_{\tau_1}(\{a\}) = \{a\} \neq \phi =$

int τ_{τ_2} ({a}) for the $\tau_{1,2}$ -closed subset {a} of X.

However, in Example 3.4., (X, τ_1 , τ_2) is DRT-space.

Theorem 3.6

Let X be a DRT-space. Then an $(1,2)^*$ -A-set in X is $(1,2)^*$ -semi-open.

Proof

Let $S = U \cap C$ be an $(1,2)^*$ -A-set, where U is $\tau_{1,2}$ -open and $C = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(C)). Since $S = U \cap$ C, we have $\tau_{1,2}$ -int $(S) \supset U \cap \tau_{1,2}$ -int(C). It is easily seen that $\tau_{1,2}$ -int $(S) \subset S \subset C$, hence $\tau_{1,2}$ -int $(S) = \tau_{1,2}$ int $(\tau_{1,2}$ -int $(S)) \subset \tau_{1,2}$ -int(C). But $\tau_{1,2}$ -int $(S) \subset S \subset U$, hence $\tau_{1,2}$ -int $(S) \subset U \cap \tau_{1,2}$ -int(C). Therefore $\tau_{1,2}$ int $(S) = U \cap \tau_{1,2}$ -int(C). Now we prove $S \subset \tau_{1,2}$ cl $(\tau_{1,2}$ -int(S)). Let $x \in S$ and V be an arbitrary $\tau_{1,2}$ open set containing x. Then $U \cap V$ is also an $\tau_{1,2}$ open set containing x. Since $x \in C = \tau_{1,2}$ -cl $(\tau_{1,2}$ int(C)), there is a point $z \in \tau_{1,2}$ -int(C) such that $z \neq x$ and $z \in U \cap V$. Hence $z \in U \cap \tau_{1,2}$ -int $(C) = \tau_{1,2}$ int(S). Therefore $x \in \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(C)) and $S \tau_{1,2}$ - $cl(\tau_{1,2}\text{-int}(S))$. From $\tau_{1,2}\text{-int}(S) \subset S \subset \tau_{1,2}\text{-}cl(\tau_{1,2}\text{-int}(S))$ we know that S is $(1,2)^*$ -semi-open.

Example 3.7

Let X = {a, b, c}, τ_1 = { ϕ , X, {a}} and τ_2 = { ϕ , X}. Then the sets in { ϕ , X, {a}} are $\tau_{1,2}$ -open and the sets in { ϕ , X, {b, c}} are $\tau_{1,2}$ -closed. In this DRTspace, we have {a, b} is not (1,2)*-A-set but it is (1,2)*-semi-open.

Theorem 3.8

Let X be a DRT-space. Then $(1,2)^*-A(X) = (1,2)^*-SO(X) \cap (1,2)^*-LC(X)$.

Proof

Let $S \in (1,2)^*$ -A(X). Then $S = G \cap R$ where G is $\tau_{1,2}$ -open and R is regular $(1,2)^*$ -closed. Clearly S is locally $(1,2)^*$ - closed. Now $\tau_{1,2}$ -int(S) = G \cap $\tau_{1,2}$ -int(R), so that $S = G \cap \tau_{1,2}$ -cl($\tau_{1,2}$ -int(R)) $\subseteq \tau_{1,2}$ cl(G $\cap \tau_{1,2}$ -int(R)) = $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(S)) and hence S is $(1,2)^*$ -semi-open.

Conversely, let S be $(1,2)^*$ -semi-open and locally $(1,2)^*$ -closed, so that $S \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ int(S)) and $S = U \cap \tau_{1,2}$ -cl(S), where U is $\tau_{1,2}$ -open. Then $\tau_{1,2}$ -cl $(S) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(S)) and so is regular $(1,2)^*$ -closed. Hence S is an $(1,2)^*$ -A-set.

Proposition 3.9

Let A be a subset of X. Then A is $(1,2)^*$ -preclosed if and only if $\tau_{1,2}$ - $cl(\tau_{1,2}$ -int(A)) \subseteq A.

Lemma 3.10

Let (X, τ_1, τ_2) be a DRT-space and G be a subset of X. Then $G \in (1,2)^*$ -C(X) if and only if $G = R \cap (1,2)^*$ -pcl(G) for some $\tau_{1,2}$ -open set R.

Proof

Suppose that $G = R \cap (1,2)^*-pcl(G)$ for some $\tau_{1,2}$ -open set R. It is obvious that $G \in (1,2)^*-$ C(X), since $(1,2)^*-pcl(G)$ is $(1,2)^*-$ preclosed.

 $\begin{array}{l} Conversely \ , \ let \ G \ \in \ (1,2)^* \ - C(X). \ Then \ G = \\ R \ \cap \ A \ where \ R \ is \ \tau_{1,2} \ - open \ and \ A \ is \ (1,2)^* \ - preclosed. \\ From \ G \ \subseteq \ A, \ we \ have \ (1,2)^* \ - pcl(G) \ \subseteq \ (1,2)^* \ - pcl(A) \\ = \qquad A \ \cup \ \tau_{1,2} \ - cl(\tau_{1,2} \ - int(A)). \ Since \ A \ is \ (1,2)^* \ - pcl(G) \\ = \qquad A \ \cup \ \tau_{1,2} \ - cl(\tau_{1,2} \ - int(A)). \ Since \ A \ is \ (1,2)^* \ - pcl(G) \\ \subseteq \ A. \ Thus, \ R \ \cap \ (1,2)^* \ - pcl(G) \ \subseteq \ R \ \cap \ A = G \ \subseteq \ R \ \cap \\ (1,2)^* \ - pcl(G), \ which \ shows \ that \qquad G = R \ \cap \ (1,2)^* \ - pcl(G) \ with \ R \ is \ \tau_{1,2} \ - open. \end{array}$

Lemma 3.11

Let (X, τ_1, τ_2) be a DRT-space and G be a subset of X. Then $G = R \cap \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(G))$ for some $\tau_{1,2}$ -open set R if and only if $G \in (1,2)^*\text{-C}(X) \cap$ $(1,2)^*\text{-}SO(X)$.

Proof

Suppose that $G = R \cap \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(G))$ where R is $\tau_{1,2}$ -open. Then $G \subseteq \tau_{1,2}$ $cl(\tau_{1,2}\text{-int}(G))$ which shows that $G \in (1,2)^*\text{-SO}(X)$. Moreover, $\tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(G))$ is $\tau_{1,2}$ -closed and therefore $(1,2)^*$ -preclosed. So, $G \in (1,2)^*\text{-C}(X)$.

Conversely, let $G \in (1,2)^*$ -C(X) $\cap (1,2)^*$ -SO(X). From $G \in (1,2)^*$ -C(X), we have from Lemma 3.10, that $G = R \cap (1,2)^*$ -pcl(G), where R is $\tau_{1,2}$ -open. From $G \in (1,2)^*$ -SO(X), we have $G \subseteq$ $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(G)). But (1,2)*-pcl(G) = $G \cup \tau_{1,2}$ -cl($\tau_{1,2}$ int(G)) (see Proposition 2.11). Thus $G = R \cap \tau_{1,2}$ cl($\tau_{1,2}$ -int(G)) with R is $\tau_{1,2}$ -open.

Theorem 3.12

Let (X, τ_1 , τ_2) be a DRT-space. Then (1,2)*-A(X) = (1,2)*-C(X) \cap (1,2)*-SO(X).

Proof

It is clear that $(1,2)^*-A(X) \subseteq (1,2)^*-C(X) \cap (1,2)^*-SO(X)$.

Conversely, let $G \in (1,2)^*$ -C(X) $\cap (1,2)^*$ -SO(X). Then by Lemma 3.11, $G = R \cap \tau_{1,2}$ cl($\tau_{1,2}$ -int(G)), where R is $\tau_{1,2}$ -open. Since $\tau_{1,2}$ -int(G) is $\tau_{1,2}$ -open, by Proposition 2.10, $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(G)) is regular (1,2)*-closed. Therefore $G \in (1,2)^*$ -A(X).

Remark 3.13

It is clear from the definition 2.4 that $(1,2)^*$ -SO(X) $\subseteq (1,2)^*$ - β O(X). However, the converse is not true.

Example 3.14

Let X = {a, b, c}, τ_1 = { ϕ , X, {a}} and τ_2 = { ϕ , X, {b, c}}. Then the sets in { ϕ , X, {a}, {b, c}} are $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Clearly, {b} \in (1,2)*- β O(X), but it is not (1,2)*- semi-open.

Theorem 3.15

Let (X, τ_1, τ_2) be a DRT-space. Then $(1,2)^*-A(X) = (1,2)^*-\beta O(X) \cap (1,2)^*-LC(X).$

Proof

If $G \in (1,2)^*$ -A(X), then, obviously, $G \in (1,2)^*$ - $\beta O(X) \cap (1,2)^*$ -LC(X). Conversely, let $G \in (1,2)^*$ - $\beta O(X) \cap (1,2)^*$ -LC(X). From $G \in (1,2)^*$ - $\beta O(X)$, we have $G \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(G))). From $G \in (1,2)^*$ -LC(X), we have, by Remark 2.12, $G = U \cap \tau_{1,2}$ -cl(G), where U is $\tau_{1,2}$ -open. So $G \subseteq U$, which implies $G \subseteq U \cap \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(G))) $\subseteq U \cap \tau_{1,2}$ -cl(G) = G. Hence we have $G = U \cap \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(G))). By Proposition 2.10, $\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(G))) is regular (1,2)*-closed, since $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(G)) is $\tau_{1,2}$ -open. Therefore, $G \in (1,2)^*$ -A(X).

4. DECOMPOSITIONS OF (1,2)*-A-CONTINUITY

Definition 4.1

A mapping $f : X \rightarrow Y$ is said to be $(1,2)^*$ continuous [9] if $f^1(V)$ is $\tau_{1,2}$ -open in X for every $\sigma_{1,2}$ -open set V of Y.

Definition 4.2

A mapping $f: X \rightarrow Y$ is said to be $(1,2)^*$ -Ccontinuous if $f^1(V) \in (1,2)^*$ -C(X) for every $\sigma_{1,2}$ open set V of Y.

Definition 4.3

A mapping $f: X \rightarrow Y$ is said to be $(1,2)^*$ -LCcontinuous [9] if $f^{-1}(V) \in (1,2)^*$ -LC(X) for every $\sigma_{1,2}$ -open set V of Y.

Theorem 4.4

Let (X, τ_1, τ_2) be a DRT-space. Then a mapping $f: X \rightarrow Y$ is $(1,2)^*$ -A-continuous if and only if it is $(1,2)^*$ -semi-continuous and $(1,2)^*$ -C-continuous.

Proof

It follows from Theorem 3.12.

Theorem 4.5

Let (X, τ_1, τ_2) be a DRT-space. Then a mapping $f : X \rightarrow Y$ is $(1,2)^*$ -A-continuous if and only if it is $(1,2)^*$ -semi-continuous and $(1,2)^*$ -LCcontinuous.

Proof

It follows from Theorem 3.8.

Theorem 4.6

Let (X, τ_1 , τ_2) be a DRT-space. Then a mapping $f: X \rightarrow Y$ is (1,2)*-A-continuous if and only

if it is $(1,2)^*$ - β -continuous and $(1,2)^*$ -LC-continuous.

Proof

It follows from Theorem 3.15.

REFERENCES

- D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [2] N. Bourbaki, General Topology, Part I, Addison-Wesley (Reading, Mass, 1996).
- [3] J. Dugundji, Topology, Allyn and Bacon (Boston, 1972).
- [4] Y. Erguang and Y. Pengfei, On decomposition of A-continuity, Acta Math. Hungar., 110 (4) (2006), 309-313.
- [5] M. Ganster and I. L. Reilly, A decomposition of continuity, Acta Math. Hungar., 56 (1990), 299-301.
- [6] K. Kayathri, O. Ravi, M. L. Thivagar and M. Joseph Israel, Decompositions of (1,2)*rg-continuous maps in bitopological spaces, Antarctica J. Math., 6 (1) (2009), 13-23.

[7] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.

[8] O. Njastad , On some classes of nearly open sets, Pacific J. Math, 15 (1965), 961-970.

 [9] O. Ravi, M. Lellis Thivagar and E. Ekici, Decompositions of (1,2)*- continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universității Din Oradea Fasicola, Matematica, Tom XV (2008), 29-37.

- [10] O. Ravi, M. Lellis Thivagar and E. Ekici, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings. Kochi J. Math., 3 (2008), 181-189.
- [11] O. Ravi, M. Lellis Thivagar and E. Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical notes, 10(2) (2009), 163-171.
- [12] O. Ravi, M. Lellis Thivagar and M. Joseph Israel, Some decompositions of bitopological (1,2)*-α-continuity. (Submitted)
- [13] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48 (1986), 11-15.
- [14] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1989), 51-55.